Letecká hyperspektrální termální data - senzor TASI

MAREK PIVOVARNÍK, JAN HANUŠ Centrum výzkumu globální změny AV ČR, v. v. i.

5.11.2015

Obsah

LETECKÉ LABORATÓRIUM (FLIS)

Teoretický základ

Rovnica radiačného prenosu

Separácia teploty a emisivity

Výsledky

Letecké laboratórium (FLIS)

1.

Senzor	CASI	SASI	TASI
Spektralna oblasť	VNIR	SWIR	LWIR
Spektrálny rozsah [nm]	380 - 1050	950 - 2450	$8\ 000 - 11\ 500$
Počet priestorových pixelov	1500	600	600
Max. spektrálne rozlišenie [nm]	3.2	15	110
Zorný uhol $[^\circ]$	40	40	40

-

2. Teoretický základ

3. Rovnica radiačného prenosu

$$L_m = \tau \varepsilon B(T_s) + \tau (1 - \varepsilon) L_{atm}^{\downarrow} + L_{atm}^{\uparrow}$$

$$\begin{split} \lambda_{1} : & L_{m}(\lambda_{1}) = \tau(\lambda_{1})\varepsilon(\lambda_{1})B(T_{s},\lambda_{1}) + \tau(\lambda_{1})(1-\varepsilon(\lambda_{1}))L_{atm}^{\downarrow}(\lambda_{1}) + L_{atm}^{\uparrow}(\lambda_{1}) \\ \lambda_{2} : & L_{m}(\lambda_{2}) = \tau(\lambda_{2})\varepsilon(\lambda_{2})B(T_{s},\lambda_{2}) + \tau(\lambda_{2})(1-\varepsilon(\lambda_{2}))L_{atm}^{\downarrow}(\lambda_{2}) + L_{atm}^{\uparrow}(\lambda_{2}) \\ \vdots & \vdots \\ \lambda_{32} : & L_{m}(\lambda_{32}) = \tau(\lambda_{32})\varepsilon(\lambda_{32})B(T_{s},\lambda_{32}) + \tau(\lambda_{32})(1-\varepsilon(\lambda_{32}))L_{atm}^{\downarrow}(\lambda_{32}) + L_{atm}^{\uparrow}(\lambda_{32}) \end{split}$$

$$L_m = \tau \varepsilon B(T_s) + \tau (1 - \varepsilon) L_{atm}^{\downarrow} + L_{atm}^{\uparrow}$$

$$\begin{split} \lambda_{1} : & L_{m}(\lambda_{1}) = \tau(\lambda_{1})\varepsilon(\lambda_{1})B(T_{s},\lambda_{1}) + \tau(\lambda_{1})(1-\varepsilon(\lambda_{1}) \ L_{atm}^{\downarrow}(\lambda_{1}) + L_{atm}^{\uparrow}(\lambda_{1}) \\ \lambda_{2} : & L_{m}(\lambda_{2}) = \tau(\lambda_{2})\varepsilon(\lambda_{2})B(T_{s},\lambda_{2}) + \tau(\lambda_{2})(1-\varepsilon(\lambda_{2}) \ L_{atm}^{\downarrow}(\lambda_{2}) + L_{atm}^{\uparrow}(\lambda_{2}) \\ \vdots & \vdots \\ \lambda_{32} : & L_{m}(\lambda_{32}) = \tau(\lambda_{32})\varepsilon(\lambda_{32})B(T_{s},\lambda_{32}) + \tau(\lambda_{32})(1-\varepsilon(\lambda_{32}) \ L_{atm}^{\downarrow}(\lambda_{32}) + L_{atm}^{\uparrow}(\lambda_{32}) \end{split}$$

$$L_m = \tau \varepsilon B(T_s) + \tau (1 - \varepsilon) L_{atm}^{\downarrow} + L_{atm}^{\uparrow}$$

$$\lambda_{1}: \quad L_{m}(\lambda_{1}) = \tau(\lambda_{1})\varepsilon(\lambda_{1})B(T_{s},\lambda_{1}) + \tau(\lambda_{1})(1 - \varepsilon(\lambda_{1}) \ L_{atm}^{\downarrow}(\lambda_{1}) + L_{atm}^{\uparrow}(\lambda_{1})$$

$$\lambda_{2}: \quad L_{m}(\lambda_{2}) = \tau(\lambda_{2})\varepsilon(\lambda_{2})B(T_{s},\lambda_{2}) + \tau(\lambda_{2})(1 - \varepsilon(\lambda_{2}) \ L_{atm}^{\downarrow}(\lambda_{2}) + L_{atm}^{\uparrow}(\lambda_{2})$$

$$\vdots \qquad \vdots$$

$$\lambda_{32}: \quad L_{m}(\lambda_{32}) = \tau(\lambda_{32})\varepsilon(\lambda_{32})B(T_{s},\lambda_{32}) + \tau(\lambda_{32})(1 - \varepsilon(\lambda_{32}) \ L_{atm}^{\downarrow}(\lambda_{32}) + L_{atm}^{\uparrow}(\lambda_{32})$$

 \Rightarrow Nedourčená sústava rovníc

$$L_m = \tau \varepsilon B(T_s) + \tau (1 - \varepsilon) L_{atm}^{\downarrow} + L_{atm}^{\uparrow}$$

$$\lambda_{1}: \quad L_{m}(\lambda_{1}) = \tau(\lambda_{1})\varepsilon(\lambda_{1})B(T_{s},\lambda_{1}) + \tau(\lambda_{1})(1 - \varepsilon(\lambda_{1}) \ L_{atm}^{\downarrow}(\lambda_{1}) + L_{atm}^{\uparrow}(\lambda_{1})$$

$$\lambda_{2}: \quad L_{m}(\lambda_{2}) = \tau(\lambda_{2})\varepsilon(\lambda_{2})B(T_{s},\lambda_{2}) + \tau(\lambda_{2})(1 - \varepsilon(\lambda_{2}) \ L_{atm}^{\downarrow}(\lambda_{2}) + L_{atm}^{\uparrow}(\lambda_{2})$$

$$\vdots \qquad \vdots$$

$$\lambda_{32}: \quad L_{m}(\lambda_{32}) = \tau(\lambda_{32})\varepsilon(\lambda_{32})B(T_{s},\lambda_{32}) + \tau(\lambda_{32})(1 - \varepsilon(\lambda_{32}) \ L_{atm}^{\downarrow}(\lambda_{32}) + L_{atm}^{\uparrow}(\lambda_{32})$$

 \Rightarrow Nedourčená sústava rovníc

Odchádzajúca radiancia $L_{LL} = \varepsilon B(T_s) + (1 - \varepsilon) L_{atm}^{\downarrow}$

$$L_m = \tau \varepsilon B(T_s) + \tau (1 - \varepsilon) L_{atm}^{\downarrow} + L_{atm}^{\uparrow}$$

$$\lambda_{1}: \quad L_{m}(\lambda_{1}) = \tau(\lambda_{1})\varepsilon(\lambda_{1})B(T_{s},\lambda_{1}) + \tau(\lambda_{1})(1 - \varepsilon(\lambda_{1}) \ L_{atm}^{\downarrow}(\lambda_{1}) + L_{atm}^{\uparrow}(\lambda_{1})$$

$$\lambda_{2}: \quad L_{m}(\lambda_{2}) = \tau(\lambda_{2})\varepsilon(\lambda_{2})B(T_{s},\lambda_{2}) + \tau(\lambda_{2})(1 - \varepsilon(\lambda_{2}) \ L_{atm}^{\downarrow}(\lambda_{2}) + L_{atm}^{\uparrow}(\lambda_{2})$$

$$\vdots \qquad \vdots$$

$$\lambda_{32}: \quad L_{m}(\lambda_{32}) = \tau(\lambda_{32})\varepsilon(\lambda_{32})B(T_{s},\lambda_{32}) + \tau(\lambda_{32})(1 - \varepsilon(\lambda_{32}) \ L_{atm}^{\downarrow}(\lambda_{32}) + L_{atm}^{\uparrow}(\lambda_{32})$$

 \Rightarrow Nedourčená sústava rovníc

Odchádzajúca radiancia Jasová teplota

$$\begin{split} L_{LL} &= \varepsilon B(T_s) + (1-\varepsilon) L_{atm}^\downarrow \\ B^{-1}(L_{LL},\lambda) \end{split}$$

Separácia teploty a emisivity

Odchádzajúca radiancia L_{LL} Dopadajúca radiancia L^\downarrow

Odchádzajúca radiancia L_{LL} Dopadajúca radiancia L^{\downarrow}

Odchádzajúca radiancia L_{LL} Dopadajúca radiancia L^{\downarrow}

Odchádzajúca radiancia L_{LL} Dopadajúca radiancia L^{\downarrow}

5. Výsledky

$\check{\mathrm{D}}\mathrm{akujem}$ za pozornosť

$\check{\mathrm{D}}\mathrm{akujem}$ za pozornosť

pivovarnik.m@czechglobe.cz